
 Journal Of Advanced Networking and Applications

 Vol. 01 No. 01 pages: 63-68 (2009)

63

---ABSTRACT--

The Model / View / Controller design pattern divides an application environment into three

components to handle the user-interactions, computations and output respectively. This

separation greatly favors architectural reusability. The pattern works well in the case of single-

address space and not proven to be efficient for web applications involving multiple address

spaces. Web applications force the designers to decide which of the components of the pattern

are to be partitioned between the server and client(s) before the design phase commences. For

any rapidly growing web application, it is very difficult to incorporate future changes in policies

related to partitioning. One solution to this problem is to duplicate the Model and controller

components at both server and client(s). However, this may add further problems like delayed

data fetch, security and scalability issues. In order to overcome this, a new architecture SPIM has

been proposed that deals with the partitioning problem in an alternative way. SPIM shows

tremendous improvements in performance when compared with a similar architecture.

 Keywords: Design Pattern, Model / View / Controller, Partitioning, SOA. Web application.

--

Paper submitted: 29.04.2009 Accepted: 18.06.2009

--

I. INTRODUCTION

Design Patterns [1] are extensions of object-oriented

programming and hence promote reusability. Pattern

structures include more of interfaces than

implementations. Therefore, it can be plugged into any

application to address a specific issue without affecting

the remaining part of code or functionality. The Model /

View / Controller (MVC) [2] design pattern is generally

applied to simplify the architectural design of an

application. In the case of web applications, the MVC

may suffer from partitioning issues as narrated under

section 1.3.

1.1 THE MODEL / VIEW / CONTROLLER DESIGN PATTERN

The MVC design pattern suggests the division of a

problem into three parts as follows: The Model is used to

hold the computational parts of the program; the View is

to deal with the rendering of output and the Controller is

to govern the interaction between the View and the user.

This classification has been widely accepted since it

promotes architectural reusability. The Model component

contains the core data and functionality. This is

independent of specific output representations or input

behavior. Controllers receive inputs in the form of events

that are translated into service requests for the Model or

G. Padmavathi

Professor & Head, Department of Computer Science, Avinashilingam University for Women,
Coimbatore-641047.

Email: ganapathii.padmavathi@gmail.com

K. Iyakutti

Senior Professor, School of Physics, Madurai Kamaraj University, Madurai-625021.

M.N.S. Mani

Consultant, Lakshmi Systems, Madurai-625020.

SPIM Architecture for MVC based Web

Applications

 R. Sridaran

Professor & HOD, Department of MCA, New Horizon College of Engineering, Bangalore-560087.

Email: sridaran.rajagopal@gmail.com

 Journal Of Advanced Networking and Applications

 Vol. 01 No. 01 pages: 63-68 (2009)

64

the View. All user interactions with the system will be

only through the Controllers.

The MVC approach has many advantages.

• Multiple Views of the same Model can be used

simultaneously. New data Views can also be

introduced at any point of time.

• MVC prevents tight coupling between the

objects. Since the dependency of a class with so

many other classes is reduced, the class can

easily be re-used.

• The application’s look and feel can be altered

without affecting the business logic or the data.

• Different interfaces or user levels can be

maintained by the same application.

• The entire application can be built or managed

independently by business logic developers, flow

of control developers and web page designers.

• The MVC is ideal to maintain an environment

comprising of different technologies across

different locations.

• MVC promotes scalability and maintainability.

1.2 MVC FOR WEB APPLICATIONS

Web applications have to be partitioned between the

client and the server. It is always appropriate to keep the

view at the client machine as it deals only with the

rendering of output against a client’s request. Similarly, it

is ideal to keep the Model at the server side as it contains

the business logic. The controller can be kept at the

server or at the client side depending upon the application

requirement. Since, the Model, view and controller

frequently interact with each other they are designed to be

kept in a single address space. In contrast to this, web-

based applications supporting multiple views with

different kind of user requests essentially occupy multiple

address spaces and hence do not serve as the right

platform for this pattern usage [3].

Using MVC for Internet applications face few more

challenges when compared with intranet based

applications. Since uncontrolled amount of users will be

interacting with the application, it is essential to address

several issues. The Internet applications should guarantee

the information availability at an economical price. A

wide range of customers spread across the globe will be

ever growing. So scalability issues should also be

addressed. With limited resources being shared by

unlimited users, it should also reinforce security.

1.3 PARTITIONING ISSUES

The problem with using the MVC design pattern to

develop web applications arises from the fact that web

applications are intrinsically partitioned between the

client and the server. The view is displayed on the client;

but the Model and controller can be partitioned in many

ways between the client and server. The developer is

forced to partition the web application during the design

phase itself. In contrast to this, MVC is partition-

independent. In other words, the Model, view and

controller reside and execute in a single address space

where the partitioning issues do not arise. Partition

independence is the main feature of MVC since location

dependency should not drive architecture decisions.

Unfortunately partitioning implies that web applications

are location dependent. Hence it is much difficult to

apply the MVC design patterns in the web application

scenario.

 Many a times, it is not possible to make correct

partitioning decisions during the design phase itself since

these decisions depend upon the application requirements

that may change from time to time. The correct

partitioning decision also depends upon certain static

factors like system architectures of client and server and

dynamic factors like network congestion. To summarize,

web applications can use the MVC pattern when the

correct partitioning is known and the available technology

infrastructure is compatible with the partitioning.

 The problem of partitioning prevents the MVC pattern

being used effectively by web application designers. The

new architecture proposed, SPIM (Sridaran-Padmavathi-

Iyakutti-Mani) as explained under Section 3, provides a

flexible approach of applying MVC for web applications.

1.4 INTRODUCTION TO MASHUP

Mashup is a web application that combines data from

more than one source into a single integrated tool. The

term ‘Mashup’ implies easy, fast integration, frequently

done by access to open APIs and data sources to produce

results that are not the original goal of the data owners. It

may also be regarded as a web page or application that

integrates complementary elements from two or more

sources. The data from more than one source into a single

integrated tool have been used for this purpose. A

mashup application has got three parts:

• A web page that provides a new service using its

own data and data from other sources

• Additional content provider to make data

available across the web through an API and

using different web protocols or other web

services.

• The client, the user of the mashup, often using a

web browser, displaying a web page, containing

the mashup.

1.5 ORGANIZATION OF THE PAPER

Section 2 provides a short survey of web applications

employing MVC pattern. Section 3 provides the

implementation details of SPIM architecture. The

proposed architecture SPIM is analyzed with a similar

architecture dmvc [3] in Section 4.

2. RELATED WORK

 Bodhuin T et al. [4] present a strategy by using MVC

for migrating a legacy COBOL system into a web-enabled

architecture. The needed information from the COBOL

 Journal Of Advanced Networking and Applications

 Vol. 01 No. 01 pages: 63-68 (2009)

65

source code is extracted and then wrapper classes are

applied to convert them into JSP.

 Yu Ping et al. [5] have provided a methodology by

which the database functionalities are extracted from the

source programs of a legacy web application to form

JavaBean objects. The legacy presentation components

are translated into JSP pages that are made to refer the

JavaBean objects and the linkage information are

extracted and web site is made Controller-centric. This

work is being extended to incorporate the language

independent feature in the source program of the

translation process.

MVC has been successfully applied to numerous web

applications. An educational tool has been proposed by

Vichido. C et al. [6] in which a user-modeling server has

been enhanced to enable a web-based learning

environment. In the same education scenario, the

management of a research projects has been dealt by

Liyong Zhang et al. [7] where MVC has been employed

to cater to the information requirements. In another

educational tool proposed by da Sliva et al. [8] MVC has

been used to allow functionality extensions.

 In the case of database oriented web applications, the

application introduced by Selfa DM. et al. [9] employs

MVC in different phases of analysis, design and

implementation with a central database made up of

multiple relations and a large number of web pages. In

the same manner, an architecture of web-oriented warfare

has been proposed by Xiaofei Wang et al. [10] that has

applied MVC pattern for the implementation of an

interface agent.

 Xiaohong Qiu [11] has applied a message-based MVC

pattern for the construction of desktop applications to

incorporate web services. In this application, the pattern

has been used to provide the web services that are

accessible from different client platforms.

3. ARCHITECTURE OF SPIM

 The structure of SPIM architecture is shown in Fig 1.

The architecture consists of a Model-Controller pair one

at each side of server and client respectively. The Server

Model (SM) and Server Controller (SC) are kept at server

side and the Client Model (CM) is kept at client side. The

Client Controller (CC) is only visible to the users of the

system. The Data Store (DS) kept at server side is

accessible by SM. Similarly the Data Cache (DC) that

holds the most recently used segments of data is

accessible by CM. All requests are passed in the form of

XML communications. DC can be thought of an

intermediate storage used for storing the results of the

user requests.

The CV, responsible for rendering of output can also be

part of another application as shown in Fig 1. In other

words, CV may belong to a ‘third party’ willing to share

the services of SPIM. Here the middle tier fetches the

necessary services from the server, as expected by the

client. The third party application mentioned over here,

can take up other services also. The same results

rendered by the architecture may be displayed with

different views as required by the target third party

applications thereby adding flexibility for the users of the

system. The architecture also facilitates mixing of

different combination of services to ‘third-party’ views

which makes it as a ‘Mash-up’ application.

Figure 1: Architecture of SPIM

3.1 THE REQUEST-RESPONSE PROCESS OF SPIM

 The sequence of steps involved in the request-response

process of SPIM is given under:

Step 01: Request from CV (users) reaches CC

Step 02: CC passes the request to CM.

Step 03: CM fetches the data from Cache if available,

 else returns “ERROR” to CC.

 Journal Of Advanced Networking and Applications

 Vol. 01 No. 01 pages: 63-68 (2009)

66

Step 04: If data is available, the results are sent to

 CC. If “ERROR” returned, Go to Step 08.

Step 05: CC requests CM to generate the XML

 document of the result

Step 06: CM generates and passes the XML

 document to CC, which in turn send the

 same to CV.

Step 07: CV generates View and renders to the end

 user and End of Transaction.

Step 08: CC transfers the request to SC.

Step 09: SC in turn requests SM.

Step 10: SM fetches the required data from Data

 Store if available, else ERROR is returned to

 SC.

Step 11: SC sends the data to CC

Step 12: CC requests CM to store the resultant Data

 in DC and to generate the XML document of

 the result

Step 13: CM generates and passes the XML

 document to CC apart from storing the same

 in DC.

Step 14: CC in turn sends the resultant information to

 CV.

Step 15: CV generates View and renders to the end

 user and End of Transaction.

 SPIM shields SC being accessed by unauthorized

service requests thereby promoting security. The

architecture further avoids the need for model

synchronization since it is not permitting duplication of

the same.

3.2 ASSUMPTIONS

 The implementation of SPIM has been carried out with

Java Server Pages (JSP) for the View, Servlets for

Controllers and Enterprise Java Beans (EJB) for Models.

My-SQL is the database used as DS and the development

is carried out in Net Beans environment. DC is

implemented as a text file.

4. ANALYSIS AND INTERPRETATION

 The performance testing is carried out in both SPIM

and dmvc by varying the record size of the database from

1000 to 30000 at regular intervals of 1000. The tests are

carried out for data fetch from a large-scale database.

The experiment is conducted as two cases a) For data

fetch in DC and b) For data fetch in DS. The values of

the experimentation are provided in TABLE 1. From the

tabulated results, it is evident that SPIM shows

improvements with respect to the time complexity

measures.

Table 1: Test Results dmvc Vs SPIM

Data Fetch from DC Data Fetch from DS

Records dmvc

(t1)

SPIM

(t2)

Decrease % Records dmvc

(t1)

SPIM

(t2)

Decrease %

1000 15 15 1000 32 16 50.00

2000 63 63 2000 141 62 56.03

3000 156 140 10.26 3000 266 125 53.01

4000 219 218 0.46 4000 453 219 51.66

5000 688 672 2.33 5000 781 343 56.08

6000 500 492 1.60 6000 1047 516 50.72

7000 687 703 2.33 7000 1407 750 46.70

8000 1125 954 15.20 8000 1844 906 50.87

9000 1203 1216 1.08 9000 2515 1297 48.43

10000 3344 3260 2.51 10000 5844 2438 58.28

11000 4313 4282 0.72 11000 8515 4453 47.70

12000 5047 5212 3.27 12000 10422 5500 47.23

13000 6141 6219 1.27 13000 12391 6235 49.68

14000 8719 8744 0.29 14000 17438 8719 50.00

15000 10609 10469 1.32 15000 21359 10578 50.48

16000 12375 12563 1.52 16000 24672 12547 49.14

17000 14515 14406 0.75 17000 28188 14375 49.00

18000 17204 15985 7.09 18000 34515 16016 53.60

19000 19844 19375 2.36 19000 39281 18359 53.26

20000 23484 23287 0.84 20000 47141 23656 49.82

21000 25266 25750 1.92 21000 50438 25297 49.85

22000 28296 28313 0.06 22000 57282 28453 50.33

23000 31218 31469 0.80 23000 63312 31437 50.35

 Journal Of Advanced Networking and Applications

 Vol. 01 No. 01 pages: 63-68 (2009)

67

24000 34297 35032 2.14 24000 68532 35016 48.91

25000 40969 40363 1.48 25000 81625 40656 50.19

26000 42625 42219 0.95 26000 84422 42281 49.92

27000 46047 46484 0.95 27000 91890 46531 49.36

28000 50610 50266 0.68 28000 101531 49969 50.78

29000 54140 54375 0.43 29000 109750 54156 50.66

30000 62312 60797 2.43 30000 122079 61250 49.83

Average 1.25 50.73

0

10000

20000

30000

40000

50000

60000

70000

1000 7000 13000 19000 25000

No.of Records

T
im
e
 T
a
k
e
n
 (
M
il
li
 S
e
c
o
n
d
s
)

dmvc

SPIM

0

20000

40000

60000

80000

100000

120000

140000

1
0
0
0

4
0
0
0

7
0
0
0

1
0
0
0
0

1
3
0
0
0

1
6
0
0
0

1
9
0
0
0

2
2
0
0
0

2
5
0
0
0

2
8
0
0
0

dmvc

SPIM

Figure 2: Graphs showing Time complexity measures for (a) Data Fetch in Cache and (b) in Data Store.

The graph patterns as shown in Fig 2 indicate the

decrease in response times as the invocations grow.

The data will be found in DC in case it has been

already fetched by a previously executed query. The

implementations of dmvc and SPIM showed only an

average reduction in time as 1.25% which is not very

significant against the range of 1-30,000 record sets.

However, the scenario changes in the case of newly

executed queries where the required data may not be

available in cache. Since SPIM does not allow

duplication of models and controllers as in dmvc, the

unnecessary overheads involved in searching the cache by

SM and in searching the DS by CM are avoided. Due to

this, the test cases where the data fetch is from DS

showed an average reduction in time as 50.73%. This is

expected to be more for multimedia data involving huge

memory.

The Standard Deviations of time values of t1 and t2 for

both the cases are calculated using the formula:

Standard Deviation (����) =

where x is the sample mean and n is the sample size. The

following table, TABLE 2 shows the computed values of

���� for the two cases discussed above.

Table 2: Computed values of ���� for Cases A and B

Architecture Case A Case B

dmvc 19058.11 38049.14

 Journal Of Advanced Networking and Applications

 Vol. 01 No. 01 pages: 63-68 (2009)

68

SPIM 18952.33 18988.91

 The ���� values for SPIM across the two cases are found

to be very consistent showing the steadiness of the

proposed architecture.

5. CONCLUSION AND FUTURE WORK

The proposed SPIM architecture will definitely be helpful

for the web application developers to make use of MVC

pattern effectively without becoming entangled into the

partitioning problem. Using SPIM, the components of the

web application can easily be managed independently. It

is also analyzed how SPIM is consistent and secured for

web applications involving multiple services. The future

work involves development of an algorithm for migration

of a legacy application into SPIM architecture.

REFERENCES

[1] Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software (Pearson

Education, New Delhi).

[2] Frank Buschmann, Regine Meunier, Hans Rohnert,

Peter Sommerlad, and Michael Stal Pattern-Oriented

Software Architecture (John Wiley & Sons (Asia) Pte

Ltd, 2001).

[3] Avraham Leff and James T. Rayfield, Web-

Application Development Using the Model View

Controller Design Pattern, Proc. 5th IEEE Conf. on

Enterprise Distributed Object Computing, 2001, 118-

127.

[4] Bodhuin T. Guardabascio E. and Tortorella M.,

Migrating COBOL systems to the Web by using the

MVC design pattern, Proc. 9th Working Conf. on

Reverse Engineering, 2002, 329-338.

[5] Yu Ping, Kostas Kontogiannis, and terrence C. Lau,

Transforming Legacy Web Applications to the MVC

Architecture, Proc. 11th Annual International

Workshop on Software Technology and Engineering

Practice,IEEE, 2003,133-142.

[6] Vichido, C. Estrada, M. Sanchez, A., A

constructivist educational tool: software architecture

for Web-based video games, Proc. 4th Mexican

International Conf. on Computer Science, 2003,144

– 150.

[7] Liyong Zhang, Futing Ma, Chongquan Zhong, Li

Zhang and Ying Wang, A MVCD Model and Its

Application in University Project Management, Proc.

6th World Congress on Intelligent Control and

Automation, 2006, Vol: 2,7008 – 7012.

[8] da Silva, E.Q. and de Abreu Moreira, D.

WebMODE: a framework for development of Web-

based tools for management of educational activities,

Proc. 5th IEEE International Conf. on Advanced

Learning Technologies, ICALT 2005, July 2005, 922

– 924.

[9] Selfa D.M. Carrillo M. and Del Rocio Boone M., A

Database and Web Application Based on MVC

Architecture, Proc. 16th International Conf. on

Electronics, Communications and Computers, IEEE

Computer Society, 2006, 48.

[10] Xiaofei Wang, Yunqiu Chen, and Yuliang Liu, Web-

oriented warfare command decision support system

based on agent and data warehouse, Proc.

International Conf. on Cyberworlds, 2005, 498.

[11] Xiaohong Qiu, Building desktop applications with

Web services in a message-based MVC paradigm,

Proc. IEEE International Conf. on Web Services,

2004, 765–768.

Authors Biography

R. Sridaran has obtained his post-graduation in

computer applications from Madurai Kamaraj University

and in management from Alagappa University, Karaikudi.

He has got a decade’s experience in academics and

another seven years in industries. He has served well

known institutions including Thiagarajar School of

Management and ICFAI. His research areas of Object-

oriented analysis and design and Software Engineering.

He has published five articles in reputed international

journals and in many conference proceedings. He is

currently working as the Professor and HOD in the MCA

department of New Horizon College of Engineering,

Bangalore.

Padmavathi Ganapathi is the Professor and Head,

Department of Computer Science of Avinashilingam

University for Women, Coimbatore, India. She has 50

publications at National and International level. Her

research interests are Computer Networks and Genetic

Algorithms. Contact her at

ganapathi.padmavathi@gmail.com.

Iyakutti Kombiah is a Senior Professor of School of

Physics of Madurai Kamaraj University, Madurai, India.

His research interests are Computational Physics and

Software Engineering. Contact him at

iyakutti@yahoo.co.in

Mani MNS has worked in senior positions with leading

corporate houses and has a overall experience of two

decades. He is presently the consultant, Lakshmi

Systems, Madurai. Contact him at mnsmani@gmail.com.

